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A B S T R A C T

Repeated stress relaxation tests are used to characterize the macroscopic time dependent behavior in metals.
During stress relaxation, the mobile dislocation density and internal stress vary continuously with time. The
phenomenological models available do not provide a comprehensive mathematical framework to account for
transient effects during stress relaxation accurately. An advanced stress relaxation model based on the loga-
rithmic model is proposed in the present work to overcome the limitations of existing models. The proposed
model is found to fit the experimental data of SS 316 better than the available models. The proposed model in
combination with Kocks–Mecking type dislocation density model is utilized to predict the rate of strain hard-
ening during relaxation

1. Introduction

Stress relaxation is one of the simplest transient tests used to esti-
mate the parameters related to thermally activated plastic deformation
such as internal stress and activation volume. The flow stress (σ) ap-
plied during plastic deformation is the sum of internal (or athermal)
stress, ‘σi’ and effective (or thermal) stress, ‘σ*’ required to overcome
the long range and short range obstacles respectively.

= + *i (1)

A typical stress relaxation test is performed by interrupting an
uniaxial tensile test for a pre-defined time interval (in the order of 60s)
at a fixed total strain. The flow stress of a rate dependent metallic
material drops continuously during this hold time. Since the total strain
εtotal remains invariant during the test duration, the plastic strain rate,

= =E
d
dt E

1 . The simplification inherently assumes that there is no
viscoelastic behavior during stress relaxation and is widely adopted
(Mohebbi and Akbarzadeh, 2017; Wang et al., 2016b; Caillard and
Martin, 2003; Krempl, 2001; Dotsenko, 1979). Although the possibility
of anelasticity during relaxation has been discussed in the past (Hart,
1970; Rohde et al., 1981), the experimental inferences were not direct
and did not consider the change in mobile dislocation density.

Therefore, time dependent elasticity is generally ignored in stress re-
laxation studies (Krempl, 2001). However, viscoelasticity can influence
the high temperature relaxation behavior (Sinha, 2003; Ma et al., 2018;
Zheng et al., 2018) and are not considered in the present work. The rate
dependent behavior during stress relaxation can be modeled using
Orowan equation, = bv,m where ϕ is a constant, ρm is the mobile
dislocation density and v is the average dislocation velocity.

Substituting = E in Orowan equation,

=d
dt

E bvm (2)

which forms the basis of most of the stress relaxation models
The classical studies on stress relaxation (Gupta and Li, 1970;

Dotsenko, 1979) assumed that σi1 and ρm remain invariant during stress
relaxation, perhaps based on the general understanding of strain rate
jump tests which supposedly does not influence the dislocation sub-
structure. From Eqs. (1) and (2),

= =d
dt

d
dt

E bv*
m (3)

The assumption of constant ρm during relaxation suggests that the
stress drop is attributed purely to the change in average dislocation
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velocity, v. An empirical relation of average dislocation velocity after
(Johnston and Gilman, 1959) led to the power law model (Gupta and
Li, 1970).

= +K t a( )i
n (4)

where =K E bB m{ (1 )} ,m
n =n m

1
1 and a is the integration

constant.
Considering plastic deformation as a thermally activated process,

the rate form of velocity =v v( exp( ))G
kT0 , can be substituted in Orowan

equation, which upon integration (Dotsenko, 1979; Caillard and
Martin, 2003) led to the logarithmic model,

= +ln t{1 }0 (5)

where α and β are material constants. It can be shown that = kT V/ *
and = +exp ( ),V E

kT
G V V

kT
* * *p i0 0 0 σ0 refers to the stress at the be-

ginning of relaxation ( =t 0) and V* is the activation volume referring to
the average volume swept by a moving dislocation segment during
plastic deformation under a given stress state (Anderson et al., 2017).
The metallurgical parameters, σi and V* can be estimated by fitting the
σ vs. t data during stress relaxation using the models described by
Eqs. (4) and (5) (Trojanová et al., 2011; Duhamel et al., 2010; Guo
et al., 2018). Although both the models have been successfully used in
literature, there is no rationale on the choice of one model over the
other for a given material and deformation condition.

It is evident from Orowan equation that = +t b v/ { },p m
v
t t

m

thus the stress drop during stress relaxation, Δσ can be modeled either
by treating v or ρm as constant or by allowing the variation of both. The
non-constancy of σi and ρm during stress relaxation were long known
(Okazaki et al., 1976; Dotsenko, 1979) almost since when Eqs. (4) and
(5) were proposed, but their variation was thought to be negligible.
Subsequent studies involving repeated relaxation tests (Caillard and
Martin, 2003; Spätig et al., 1993) and other microstructural studies
(Mohebbi et al., 2015; Li, 2000; Wang et al., 2017; Varma et al., 2018)
report (Fig. 1) that it is essential to consider the variation of mobile
dislocation density when modeling stress relaxation. Accounting for the
transient nature of σi irrespective of its magnitude assumes importance
in various problems. For instance, when stress relaxation data is used to
estimate the activation parameters of deformation (Mohebbi et al.,
2015; Guo et al., 2018), even a small change in σi can influence the
accuracy. Similarly, it has been shown (Li and Chau, 2006) that a cri-
tical value of internal stress is required to initiate fracture in metallic
materials. Stress relaxation phenomenon is been utilized to increase the
ductility of metallic materials (Hariharan et al., 2016; Bong et al., 2016;
Hariharan et al., 2013), the mechanism of which is related to stress
homogenization during relaxation (Varma et al., 2018; Majidi et al.,
2016). Recently, Wang et al. (2016a, 2017) extended elasto-viscoplastic
self consistent(EVPSC) model incorporating intra-granular stress

distribution to predict stress relaxation. They showed that the average
resolved shear stress (which can be correlated to internal stress) de-
creases during stress relaxation in AZ31 and SS 316LN.

Limited attempts have been made in the past to account for the
variation of ρm and σi in stress relaxation model (Okazaki et al., 1976;
Xiao and Bai, 1998; Caillard and Martin, 2003; Mohebbi et al., 2015;
Hariharan et al., 2016). The logarithmic model modified by
Caillard and Martin (2003) is widely used and shall henceforth be re-
ferred as ‘model1’. The advantage of the model is that the original
mathematical form of the logarithmic model remains unaltered. The
effect of ρm and σi is accounted through a scaling constant, Ω defined
(Caillard and Martin, 2003) as

=V V* a (6)

where Va is the apparent activation volume, which is different from V*
due to the change in σi and ρm.

The variation of ρm is expected to share a similar mathematical form
of v, (Caillard and Martin, 2003; Diologent et al., 2011)

= v v( / )m t

m

p( )

0
0

(7)

where p is the exponent.
Orowan equation, when combined with Eq. (7), yields

= =
+

v
v

m
m

m
m

p
p

0 0 0 0

1

. = E/ during stress relaxation, the loga-

rithmic model gives = + t
1

10
. Therefore, the variation of ρm can be

derived as Caillard and Martin (2003),

=
+

+

t
1

1
m t

m

p p
( )

0

/1

(8)

The change in internal stress during relaxation is usually negligible
and can be modeled (Dotsenko, 1979; Caillard and Martin, 2003) as a
linear function of plastic strain change.

=t t
E

( ) ( )
i t p

r
( ) (9)

The solution seems elegant given that the original mathematical
form is preserved and only V* is replaced with ΩV*. However, when
integrating the stress rate, β should vary with time to accommodate the
change in ρm. Treating β as a constant and accommodating the variation
of ρm in α is incorrect. This error restricts the slope of the model =S| | 1
at sufficiently large time. Experimental observations by
Mohebbi et al. (2015) showed that |S|≠ 1. In addition to the above, the
estimation of rate of hardening during relaxation, θr is not well defined.

As a first approximation, = d
d

obtained from monotonic tensile tests
can be used. However, θ includes the effect of both σi and σ* whereas θr
is related primarily with σi.

Fig. 1. Bright-field TEM micrographs of the samples tested in tension at a strain rate of 10 2 s 1 at a strain of 25% with (a) unloaded at 25% strain with no relaxation
and (b) unloaded after a holding period of 60 s. Note that the arrows in (b) indicate the cell formation (reproduced from Varma et al., 2018).
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In the present work, it is attempted to propose a new model that can
accurately represent the evolution of ρm and σi during stress relaxation.

2. New model for stress relaxation

The non-constancy of ρm during relaxation can be accommodated by
either (i) introducing a time dependent evolution of the constant β or
(ii) by incorporating an mathematical expression for the variation of ρm
in the differential form of the model. The first approach was generalized
by Mohebbi et al. (2015) and recently adopted in
Hariharan et al. (2016) as given below.

= + e t¯ ln(1 ¯ )t
0 0 (10)

where ¯ accounts for the variation of σi through Eq. (9) and λ is a fitting
constant.

The above model shall be referred to as ‘model2’ in the rest of the
manuscript. During stress relaxation, σ decrease continuously and sa-
turates, for which the mathematical necessity is 0d

dt for all the values
of t.

= +
+

d
dt

e t
e t

¯ (1 )
1model

t

t
2 0

Since λ<0 in Eq. (10), > 0d
dt when >t 1/ , which is not physically

plausible.
In the present work, the second approach is adopted to propose a

new phenomenological model for stress relaxation. The advantage of
the approach is that the variation of ρm is introduced in the differential
form of stress relaxation equation, which upon integration directly
yields a mathematically consistent solution.

A general expression for ρm(t) is given by

=
+
A

t a
m t

m

( )

0

where λ is a material constant.
The above equation reduces to the solution proposed by Xiao and

Bai (1998) when = 1 and to Caillard and Martin (2003) when
= = =

+
A a p

p
1 &

1
. At the initiation of stress relaxation ( =t 0),

= ,m m0 which simplifies to Eq. (11), irrespective of the value of the
constant ‘a’. The role of ‘a’ in the equation is to avoid singularity at

=t 0.

=
+
a

t a
m t

m

( )

0 (11)

Substituting Eq. (11) & average dislocation velocity (rate form) in
Eq. (3),

=
+

+d
dt

E b a
t a

exp G V V
kT

* *
m

i
0

0

(12)

Upon integrating Eq. (12) (refer Section A.1), the following new
model is obtained

= + +ln t a
a

1 ¯ 10
1

(13)

where = kT V/ * and = ( )E b¯ expm
V
kT

a G V
kT0

*
1

* *0 0 .
σ0* refers to the effective stress at the beginning of relaxation when

time, =t 0. ¯ in Eq. (13) is distinctly different from model 2.

2.1. Modeling internal stress change

(σi)t is highly dependent on the substructure (Hu et al., 2016).
During stress relaxation, the substructure is altered by the reduction of
ρm through dislocation annihilation and strain hardening due to plastic
strain = E( / )p (Dotsenko, 1979). It is to be clarified that

annihilation in the present manuscript unless and otherwise specified,
explicitly refers to the dislocation annihilation2 during stress relaxation.
In general, the change in internal stress is modeled as a linear function
of plastic strain, which accounts only for strain hardening and not for
dislocation annihilation (Dotsenko, 1979).

In the present work, an alternate approach to determine Δσi is de-
monstrated using the dislocation density based model. The classical
Kocks–Mecking–Estrin (K–M–E) model (Kocks and Mecking, 2003;
Estrin, 1998) relates internal stress to total dislocation density as

= M µbi (14)

whereM is the Taylor factor, φ a fitting constant, μ is the shear modulus
and b denotes the Burgers vector. Using a power law kinetic equation
(Estrin, 1998), rate dependent flow stress (σ) can be calculated as

= ( / )i
m

0 (15)

where 0 and m are experimentally determined material constants. The
evolution of dislocation density during strain hardening consists of a
storage (k1 ) and recovery term (k2ρ) (Kocks and Mecking, 2003).

=d
d

M k k{ }1 2 (16)

where k andk1 2 are constants.
Several modifications of dislocation density based model have been

proposed (Barlat et al., 2002; Lindgren et al., 2017; Hamelin et al.,
2011; Benzerga, 2008) to accommodate different deformation me-
chanisms such as the effect of solute concentration, temperature, strain
rate (Kreyca and Kozeschnik, 2018; Babu and Lindgren, 2013; Fan and
Yang, 2011; Hansen et al., 2013) and grain size (Khan and Liu, 2016;
Fan and Yang, 2011; Jiang et al., 2018). The approach has also been
proven to model the changes in deformation strain path (Beyerlein and
Tomé, 2007; Carvalho Resende et al., 2013; Jeong et al., 2017) such as
latent hardening (Zecevic and Knezevic, 2018; Bertin et al., 2014),
Bauschinger effect (Rauch et al., 2007; Wang et al., 2017) and cyclic
loading (Muhammad et al., 2017; Zecevic and Knezevic, 2015; Ha et al.,
2017; Jeong et al., 2017).

The classical K–M–E model (Eq. (16)) used to demonstrate the
evolution of internal stress during stress relaxation can be rewritten as

= =d
dt

d
d

d
dt

M k k{ }1 2

varies continuously during stress relaxation. From Eq. (13), for the
proposed model is given as

= = +

+ +{ }( )E
d
dt

t a1 ( )

1 1t a
a

1

(17)

where = a
E

(1 ) ( 1)
. Therefore the time dependent dislocation

evolution during stress relaxation is given by

= +

+ +{ }( )
d
dt

M k k t a{ } ( )

1 1t a
a

1 2 1

(18)

A monotonic stress relaxation test involves pre-straining the material to
say ε0. Let the total dislocation density at ε0 be indicated as =( ) ˜0 .
The time dependent evolution of ρ during stress relaxation can be
conveniently written (refer Section A.2) as,

= +t f r (19)

where ρf and ρr respectively indicates forward and reverse dislocation

2 It is generally accepted that the annihilation of dislocations occur during
monotonic loading without stress relaxation also. However, the net effect of
dislocation multiplication and annihilation during monotonic loading is a po-
sitive increment in dislocation density with plastic strain.
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densities.
The decomposition of forward and reverse dislocation is similar to

the framework adopted by Rauch et al. (2007) to analyze the Bau-
schinger effect. This approach is justified from a perspective that the
annihilation mechanism during relaxation and Bauschinger effect are
similar which can be explained using the classical Orowan mechanism
(Brown, 1977; Hu et al., 2016) illustrated in Section A.3. The main
difference between annihilation in Bauschinger effect and stress re-
laxation is that the former is effected by stored potential energy (elastic
energy) whereas the latter is due to the kinetic energy of the mobile
dislocations.

Following the above discussion, = +M µbi f r . During mono-
tonic loading, forward dislocations get accumulated (Eq. (18)) ( =f )
whereas reverse dislocations remain null ( = 0r ). When stress relaxa-
tion begin at t0, the mobile dislocation density decrease following
Eq. (11). The reverse dislocation (ρr) at =t t0 is considered to be a
constant fraction of total dislocation density, ˜ (Rauch et al., 2007;
Hariharan et al., 2017). An additional evolutionary law (Eq. (20)) as
proposed in Hariharan et al. (2017) is used to model the annihilation of
ρr with time.

= =
d
dt

d
d

d
dt

qMK
˜

r r
f

r
1 (20)

where q is a scalar indicating the rate of annihilation of reverse dis-
locations. Substituting from Eq. (17) in the above expression,

= +

+ +{ }( )
d
dt

qMK t a
˜

( )

1 1
r

f
r

t a
a

1 1

(21)

The remaining dislocations =( (1 ) ˜)f continue to evolve following
Eq. (18).

The parameters of dislocation density model for SS 316 (Table 1)
considered in the present work is estimated by curve fitting the stress-
strain curve at room temperature and a strain rate of e1 s2 1. The ma-
terial constants, M, μ and b are chosen from literature (Rauch et al.,
2007). The predicted stress strain curve compares well with the ex-
perimental data (Fig. 2). The stress relaxation constants
( = = = =a7.2, 423.5, 0.11, 1.35) corresponds to the first re-
laxation step at a pre-stress of 600MPa (refer Table A.1) and were
obtained by least square fitting using Eq. (23) explained in the sub-
sequent section. The evolution of forward and reverse dislocation
density during stress relaxation (Eqs. (18) and (21)) for typical values of

= 0.35 and =q 0.5 is shown in Fig. 3.
Experimental observation suggests that most of the stress drop

during relaxation occurs within the first few seconds. Therefore, the
annihilation is expected to dominate the initial period. The value of θr
depends upon the choice of Γ and q, as shown in Fig. 4. Γ was varied
between 0< Γ<1 as they represent the extreme cases. Larger value of
q leads to negative value of θr (Fig. 5). While the theoretical possibility
of negative θr cannot be ruled out (Mohebbi et al., 2015), typical cases
suggest that it involves significant annihilation of ρm. Therefore, it is
reasonable to assume that θr>0 for most cases.

θr predicted for the above experimental data is plotted (Fig. 4) as a
function of Γ and q; θr increases with Γ or q or both. The rate of
hardening = d d( / ) from the monotonic tensile test data at the re-
laxation pre-stress is compared along with θr in Fig. 5. One of the im-
portant inferences from the analysis is that θr(max) < θ even when there
is no dislocation annihilation (Γ or =q 0). This is a direct consequence

of K-M-E model, as shown below. From Eq. (15),

= ( / )i
m

0 (22)

Therefore for a given strain increment (Δε), =/ ( / )r max
m

( ) 0 . The
quantity >( / ) 1m

0 for any σ> σi.
The net value of σi at any instance is due to the combined effect of ρf

and ρr. It’s evolution for the above case is shown in Fig. 6. To under-
stand the influence of ρr, a theoretical case assuming = =0( 0)r is
plotted along with. This corresponds to the maximum increase in σi
during relaxation. The overall change in Δσi is negligible. Therefore, the
difference between subsequent relaxation steps is primarily due to
change in ρm and not due to σi as attributed in Sargent et al. (1969).

Modeling strain hardening during stress relaxation is still an open

Table 1
Material constants obtained by least square fitting of SS 316.

M φ μ[GPa] b[nm] m K1 K2 [s ]0 1 [mm ]0
2

3 0.563 85 0.247 0.096 46,000 3.28 7.85× 10−6 3.07× 107

Fig. 2. Stress-strain curve obtained using KME model compared with experi-
mental data of SS 316.

Fig. 3. Evolution of forward and reverse dislocations during stress relaxation,
assuming = 0.35 and =q 0.5 in SS 316.

Fig. 4. Variation of θr with Γ and q for SS 316 investigated in the present work.
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problem (Caillard and Martin, 2003). Since both strain hardening and
reduction of mobile dislocation density result in similar macroscopic
behavior, it is not possible to decouple them without additional tests. It
is therefore recommended to estimate θr from curve fitting bounded in
the range of 0< θr< θr(max). Eq. (13) can be modified to account for
the internal stress change as follows,

= + +ln t a
a

¯ 1 ¯ 10
1

(23)

where = +( )¯ E
1 r .

Both θr and λ in the above equation has a similar effect on stress
relaxation and cannot be separated. One of the possibilities (described
in Caillard and Martin, 2003) is to assume =r . Although,
(θr)actual≠ θ, the assumption is reasonable as Δσi ≪ Δσ.

2.2. Estimation of activation volume

As discussed earlier, estimation of activation volume from single
relaxation test will yield only an apparent value (Va) due to the dy-
namic nature of ρm and σi. Spätig et al. (1993) (model 1) used repeated
relaxation to estimate the actual activation volume for logarithmic
model. Repeated relaxation is characterized by a pre-stress, σ0 to which
the specimen is immediately reloaded between successive relaxation
steps. This reloading is assumed not to alter the substructure and

therefore is expected not to change either ρm or σi.3 Based on this as-
sumption, V* for model 1 is given (refer Section A.4.1) by Eq. (24) and
shall be referred as method-1.

=
++V kT ln

t
*

(1 )

j

j j

j

1

(24)

where subscript j refers to the relaxation step.
An alternate procedure for estimating activation volume can be

found in Martin et al. (2002) where the strain rate ratio within a single
relaxation step is estimated using the apparent activation volume,

=V V *a . This method shall henceforth be referred as method-2. The
ratio of strain rate at the beginning of two consecutive relaxations is
given (Section A.4.2) by

=+ exp V kT[( 1) * / ]p i j

p i j
j

( , 1)

( , ) (25)

where subscript i refers to the initial condition of relaxation step.
Eq. (25) can be extended to relate the first and nth relaxation step as

= exp V kT( 1) * ( / )p i n

p i

n

j
( , )

( ,1) 1

1

(26)

The strain rate ratio for a single relaxation step through Eq. (25) is
valid only if ln ( )p vs. Δσ exhibits a linear relation during relaxation,
which is complied by model 1. However, as mentioned earlier, ac-
counting the mobile dislocation density change require either time
dependent variation of β or an alternative mathematical form. It is less
likely to obtain a linear relation when such modifications are at-
tempted. Therefore, it is not recommended to use the method-2 to es-
timate V*.

2.2.1. V* For the proposed model
The new model in the present work exhibits non-linear relation

between ln ( )p and Δσ, as expected. Therefore, method-1 is used to
derive V* using the proposed model. Substituting from Eq. (17) and
simplifying,

=
+

+
++ +

+ +

t a
a

t a
a

( )
( )

1 ¯ 1p i j

p f j

i j

j

j j

j j
j

j

j

( , 1)

( , )

, 1

1 1

1 j

V* for the proposed model can be estimated following the procedure
in Section A.4.1 as

=
+

+
++

+ +
V kT ln

t a
a

t a
a

*
( )
( )

1 ¯ 1
j

j

j

j j

j j
j

j

j

1

1 1

1 j

(27)

3. Experiments

Repeated stress relaxation under monotonic tension in a commer-
cially available marine grade low carbon stainless steel, SS 316L was
studied using a 30 kN tensile testing machine (Zwick/Roell Z030 with
an optical extensometer). The chemical composition and mechanical
properties of the material are tabulated in Table 2 and Table 3 re-
spectively. The specimens were prepared according to ASTM E8 stan-
dard. The experiments were carried out by interrupting the monotonic
tensile test at predefined stress level between 550MPa and 640MPa.
Around 10 relaxation steps of 30 s hold time were performed in each
trial. The effect of hold time was studied by performing additional ex-
periments with 10 s and 60 s. All the experiments were carried out at a
strain rate of 10 s2 1 and were repeated with at least three samples.

Fig. 5. θr decreases with q. Large values of q leads to −ve values in SS 316.
θr< θ in all the cases.

Fig. 6. Evolution of internal stress during stress relaxation ( = 0.35) of SS 316.

3 In the original reference (Spätig et al., 1993; Caillard and Martin, 2003),
there is no mention of the constancy in internal stress. However, Δσ replaced
Δσ*, which is possible only when σi remains invariant.
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4. Results and discussion

Typical stress-strain curve obtained during repeated relaxation
tests is shown in Fig. 7a and b. Repeated relaxation increases the
overall ductility of the material. The ductility improvement increases
with pre-strain (stress)(Fig. 7c), similar to the trend observed in
single (Hariharan et al., 2016; Prasad et al., 2018) and multiple

relaxation4 tests (Hariharan et al., 2013; Eipert et al., 2014; Li et al.,
2017). However, contrary to the results of single step relaxation
(Hariharan et al., 2016; Prasad et al., 2018), no ductility improve-
ment is observed as the hold time increased from 10 to 60 s (Fig. 7d).

Fig. 8 shows the variation of stress with time during repeated re-
laxation. The total stress drop during relaxation decreases with pro-
gression of relaxation steps. The magnitude and trend of stress drop is
dependent on relaxation time and pre-stress (Fig. 8b and c). The trend
observed in Fig. 8b is similar to that reported earlier (Hariharan et al.,
2013). The stress drop during relaxation, in general increased with the
pre-stress, except at 640MPa. The reversed trend at 640MPa could
possibly be due to the corresponding plastic strain that had crossed the

plastic instability (ultimate tensile strength). The ductility improvement
during stress relaxation is attributed (Hariharan et al., 2016; Varma
et al., 2018) to the net effect of two simultaneously active mechanisms,

Table 2
Chemical composition- SS 316.

Element C Mn S P Si Cr Ni Fe

SS316L 0.02 1.70 0.003 0.04 0.30 17.10 10.0 Rem

Table 3
Mechanical properties- SS 316.

Grade ν E[GPa] YS, Rp0.2[MPa] UTS[MPa] Total elongation [%]

SS316L 0.25 193 415 639 42.2

Fig. 7. (a) Ductility improvement in SS 316 during repeated stress relaxation at different pre-stress; (b) Engineering Stress strain curve- repeated relaxation at
630MPa for varying hold time; Effect of initial stress (c) and relaxation time (d) in the improvement of uniform elongation during repeated stress relaxation.

4 The flow stress at the beginning of every individual relaxation step is con-
stant during repeated relaxation. Such restriction is not imposed in multiple
relaxation and the material strain hardens between subsequent relaxation steps.
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namely (i) dislocation annihilation and (ii) homogenization of internal
stress. The initial few seconds is dominated by annihilation mechanism
whereas the improvement at longer time intervals is contributed by the

internal stress homogenization.
During repeated relaxation test, the end of first relaxation step

witnesses reduced mobile dislocation density and homogeneous in-
ternal stress. When the material is reloaded to σ0, the dislocation

Fig. 8. Stress drop decrease continuously with number of relaxation steps
during repeated relaxation in SS 316: (a) Stress vs. time trend during repeated
stress relaxation at 550MPa, (b) Effect of pre-stress and (c) Effect of relaxation
time (pre-stress- 630MPa).

Fig. 9. Comparison of different models to fit the experimental data of SS 316
during stress relaxation at 550MPa and 30 s. Data fit of single relaxation step
using (a) model 1 (b) model 2 and (c) proposed model.
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density does not increase. Assuming the increase in ρm due to strain
hardening is negligible, the mobile dislocation density available for
annihilation at the beginning of second relaxation step must be less
than that during the initiation of first relaxation step. With the incre-
ment in repeated relaxation steps, the annihilation of ρm will subside
completely.

4.1. Validation of the proposed model

The first relaxation step of repeated relaxations performed at
550MPa and 30 s hold time was fit using models 1, 2 and the proposed
model. The constants of the model were identified by least square fit of
the experimental data using commercial software, MATLAB. The fit
data are tabulated in Section A.5. Model 2 and the proposed model are
extensions of the logarithmic model (model 1). The values of α and β
obtained while fitting model 1 were used as initial guess in estimating
the parameters for model 2 and the proposed model. All three models fit
the experimental data with reasonable accuracy (Fig. 9). It is observed
that the root mean square error (RMSE) in prediction is least for the
proposed model followed by model 2 and 1. The improved accuracy can
be attributed to the flexibility introduced by additional constants in the
proposed model.

The proposed model was used to fit all the repeated relaxation data

obtained from the experiments. Each relaxation step in repeated re-
laxation was fit independently. α in model 1 represents the combined
transient effect of σi and ρm and was treated (Caillard and Martin, 2003)
constant during repeated relaxation. Unlike model 1, ¯ in the proposed
model accounts only for (σi)t (refer Section 2.1). No constraint was
imposed on the constancy of ¯ while fitting the experimental data.

It is observed from Fig. 10 that ¯ increase upto five relaxation steps
and saturates to a constant value. = +( )¯ ,E

1 r it may be concluded
that θr too reaches a stable value after fifth relaxation step. (σi)t is non-
linear due to the combined effect of dislocation annihilation and work
hardening; of which σi decreases due to the former and increases with
the latter. The constancy in θr after fifth relaxation step suggests that
(σi)t is only due to work hardening and dislocation annihilation after
fifth relaxation step is negligible. The reduction of ρm after the fifth
relaxation step could be due to its conversion to sessile dislocation at
the obstacles. ¯ is inversely proportional to the apparent activation
volume and hence its trend with stress and time shall be discussed along
with activation volume in the subsequent paragraphs.

The constant ¯ is related to (a) mobile dislocation density at the
beginning of relaxation step (ρm0) and (b) λ. ρm0 increases with pre-

Fig. 10. Variation of ¯ with (a) pre-stress and (b) time in SS 316. ¯ increases
initially and saturate after 5 relaxation steps.

Fig. 11. Effect of (a) pre-stress and (b) time on the variation of ¯ with re-
laxation steps in SS 316.
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strain (stress) in monotonic loading due to strain hardening. The cor-
relation with ¯ is evident that its value increased with pre-stress in the
first relaxation step (Fig. 11a). However, the trend got reversed in
subsequent relaxation steps due to its dependence on λ. The relaxation
time had little effect on ¯ (Fig. 11b) suggesting that the decrease of
mobile dislocation density is complete within shorter time intervals
(less than 10s). This is consistent with the findings on the mechanism
related to stress relaxation (Hariharan et al., 2016; Varma et al., 2018).
The constant, λ which refers to the rate of reduction of mobile dis-
location density was observed to increase with pre-stress (Fig. 12a).
Since ρm0 increases with pre-stress, it may be concluded that λ is de-
pendent upon ρm0. A similar trend of increase in the rate of reduction of
ρm with stress was reported by Okazaki et al. (1976). As the relaxation
time increases, the internal stress homogenize (Hariharan et al., 2016;
Varma et al., 2018; Wang et al., 2017) reducing the stress concentration
zones in the lattice. The inhomogeneous internal stress and the stress
concentration zones serve as driving force for dislocation annihilation.
They also assist in reduction of ρm by entrapment at the obstacle in-
terface. The rate of reduction of ρm decreases at longer time intervals
with internal stress homogenization, evident from Fig. 12b.

The relative variation of the three parameters ( ¯ , ¯ & ) with re-
spect to their initial values (1st relaxation step) is plotted in Fig. 13. It is
observed that ¯ is relatively invariant, in agreement with the constraint
imposed in model 1. It was inferred in the discussion of ¯ that the
dislocation annihilation subside after fifth relaxation step and the re-
duction of ρm in subsequent steps could be due to conversion of mobile
to sessile dislocations. Similar conclusion could be arrived from the
trend of ¯

( ¯)ini
and ,( )ini

as both vary non-linearly till the fifth relaxation
step (Fig. 13). The non-linearity is due to the combined effect of dis-
location annihilation and strain hardening on ρm whereas the linear
portion post fifth relaxation step indicates the contribution to be purely
by strain hardening.

( )ini
drastically reduces to near saturation in the

first two relaxation steps. Since λ indicates the rate of annihilation, it is
clear that maximum dislocation annihilation occurs in the first relaxa-
tion step. It is worth mentioning that the ductility improvement due to
stress relaxation is maximum in the first relaxation step. The im-
provement is only marginal in subsequent relaxation steps. It provides
an indirect evidence that dislocation annihilation plays a vital role in
ductility improvement due to stress relaxation.

The activation volume V* is calculated using Eq. (27) and its de-
pendence on stress and relaxation time are shown in Figure. 14a & 14b.
The estimated activation volume in first relaxation step was in the
range of 8.5–14 b3. The activation volume initially increased and sa-
turated with relaxation steps. The activation volume in tenth relaxation
step was in the range of 26–33 b3. The saturated values of V* is plotted
as a function of stress and time respectively in Fig. 14c and d. The
estimated V* is consistent with the range reported in literature
(Campbell et al., 1977).

A similar observation of activation volume increasing with relaxa-
tion steps was made by Yang et al. (2006) for repeated stress relaxation
in nanostructured copper. Lower activation volumes are observed at
higher predefined stress levels and is consistent with earlier observa-
tions (Spätig et al., 1993; Martin et al., 2002). At a given relaxation
step, V* decreases with increase in pre-stress. This trend correlates in-
versely with ¯ (Fig. 10a) and directly with ¯ (Fig. 11a). ¯ and ¯ re-
spectively accounts for the transient effect of σi and ρm. From Fig. 13,
the variation of ¯

( ¯)ini
with relaxation step is much less than that of ,

¯
( ¯)ini

suggesting Δσi has relatively lesser influence on the estimation of V*
when compared to ρm. The evolution of V* is also influenced by the
relaxation hold time (Fig. 14b). With increase in relaxation hold time,
V* saturates with lesser number of relaxation steps.

The activation volume usually decreases with strain hardening,
evident from Fig. 14a. The increase in activation volume during re-
peated relaxation suggests work softening. At any given relaxation step

Fig. 12. Variation of λ with (a) pre-stress and (b) relaxation hold time in SS
316.

Fig. 13. Relative variation of ¯ , ¯ & normalized with their initial values.
The subscript ‘ini’ in the legend indicates the initial value at first relaxation
step. Material - SS 316.
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prior to saturation, V* increases with hold time (Fig. 14b). Thus work
softening occurs with increase in relaxation steps and hold time. This
may appear counter-intuitive as we have shown that the material strain
hardens (although infinitesimally) during relaxation. However, overall
softening is still possible if the internal stress tend to homogenize within
the lattice, thereby relieving the stress concentration zones. The above
observations and the plausible explanation are in agreement with the
mechanism of internal stress homogenization proposed recently
(Hariharan et al., 2016; Varma et al., 2018) to explain the observed
ductility improvement due to stress relaxation.

5. Conclusion

Repeated stress relaxation test is a useful macroscopic test to esti-
mate the activation parameters. The variation of mobile dislocation
density is not modeled accurately in the logarithmic model. It is shown
that extending the logarithmic model without any modification of the
constant ‘β’ conflicts with the inherent assumption of constant ρm.
Although this does not cause serious error in fitting the experimental
data, the activation volume calculated using the model is inaccurate. An
advanced phenomenological model is proposed in the present work,
which overcomes the limitation of the existing model. In addition to

modeling evolution of mobile dislocations, the proposed model adopted
dislocation density based approach to account for the evolution of
transient internal stress. This attempt is probably unique in the mod-
eling of stress relaxation. The experimental results obtained from SS316
material are used to compare the proposed model with other existing
models. The accuracy of data fitting using the proposed model is found
to be improved when compared with the existing models. In a typical
single stress relaxation test, the RMSE of the proposed model is 0.4
against 1.4 for the traditional logarithmic model. While the dependence
on least square fitting method to identify all the constants in the pro-
posed model is a limitation, it can be overcome when additional ex-
periments are developed in future to understand the physical nature of
constants.
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Appendix A

A1. Integration of proposed logarithmic model

Eq. (12) can be simplified as

= +d
dt

C a t a exp C( ) ( )1 2 (A.1)

where = +( )C E b expm
G V

kT1 0
*i0 and =C V

kT2
* .

Rearranging and integrating Eq. (A.1)

= + +exp C C C a t a C D( ) ( )
12

2 1
1

2 (A.2)

where D is the integration constant, which can be obtained by substituting = 0 at =t 0 in Eq. (A.2).

=C D exp C C C a( )
12 2 0

2 1

Substituting C2D back in Eq. (A.2) and simplifying,

= + +exp C exp C C C a exp C t a
a

( ) ( ) 1
1

( ) 12 2 0
2 1

2 0
1

(A.3a)

= + +
C

C C a exp C t a
a

1 1
1

( ) 10
2

2 1
2 0

1

(A.3b)

Substituting C1 and C2 in Eq. (A.3b),

= + +ln t a
a

1 ¯ 10
1

(A.4)

where

=

=

kT V

E b V
kT

a G V
kT

/ *
*

1
exp * *

m0
0 0

σ0* refers to the effective stress at the beginning of relaxation ( =t 0).

A2. Forward and reverse dislocations

Let the total dislocation density at pre-strain, ε0 be indicated as =( ) ˜0 . ˜ is contributed by both mobile (ρm) and immobile dislocations (ρim).

= += =˜ m t im t( 0) ( 0) (A.5)

The evolution of total dislocation density with time (ρt) is due to the superposition of mechanisms that control the evolution of mobile and immobile
dislocations in the lattice (Eq. (A.6a)). As discussed earlier, the mobile dislocation density reduces during stress relaxation. The reduction of ρm is due
to the combined effect (Eq. (A.6b)) of dislocation annihilation and the immobilization at the obstacle interface.

= + += =t m t im t m t im t( 0) ( 0) ( ) ( ) (A.6a)

=m t m trap m anni( ) ( ) ( ) (A.6b)

where Δρm(trap) indicates the immobilization of fraction of mobile dislocations by the obstacles and Δρm(anni) indicates the annihilation. Since the
latter reduces the total dislocation density, negative sign is used for the component.

In addition to the above, strain hardening driven by the plastic strain increment during stress relaxation, (Δεp)t increases the total dislocation
density.

= +SH t m SH im SH( ) ( ) ( ) (A.7)

where the subscript SH indicates strain hardening. Summarizing the different contributions to transient total dislocation density during stress
relaxation,

= + +t m SH im SH m trap m anni( ) ( ) ( ) ( ) (A.8)

All the components of dislocation density increment with the exception of annihilation Δρm(anni) contributes positively to the increase in total
dislocation density during subsequent deformation. Therefore the time dependent evolution of ρ can be grouped into forward (ρf) and reverse
dislocation (ρr) densities,

= +t f r (A.9)

where ρf and ρr respectively indicates forward and reverse dislocation densities given by = + +f m SH im SH m trap( ) ( ) ( ) and =r m anni( ).
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A3. Orowan mechanism for stress relaxation

The plastic deformation is accomplished by the movement of dislocations from one equilibrium state to other, crossing a thermal energy barrier.
The dislocations move discreetly spending a characteristic wait time at the obstacles (Barlat et al., 2002). At any instant during plastic deformation,
statistically, there are many dislocation line segments that are perturbed from their equilibrium position but possess insufficient energy to cross the
thermal barrier. During stress relaxation, the plastic strain rate decreases continuously and it decreases the probability of dislocation segments
crossing the thermal barrier. Therefore, such dislocations try to reach their initial equilibrium state from which they were perturbed. Physically, the
scenario can be imagined by considering an initially straight edge dislocation line(shown as A in Fig. A.1a passing through a set of obstacles in the

crystal lattice. The dislocation movement follows Orowan mechanism of pinning around the obstacles before traversing them. The dislocation
segment A and C (Fig. A.1b) are in equilibrium state, C has crossed a set of obstacles whereas A has not been moved from its initial equilibrium.
During stress relaxation, the dislocation segment B, which has not crossed the obstacles will be unpinned and try to straighten out like A. In this
process the dislocation segments loses their kinetic energy due to reduction of average dislocation velocity, which provides sufficient driving force
for dislocation annihilation when interacting with the other moving dislocations of opposite sign.

A4. Methods to estimate activation volume

It is assumed that ρm remain invariant between the end of a stress relaxation step and the onset of subsequent relaxation (Caillard and
Martin, 2003). Derivation of V* using this assumption is referred as method-1.

Fig. A1. Schematic illustration of dislocation annihilation during stress relaxation.
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A4.1. Method 1
From Orowan equation, at the end of a relaxation step and the beginning of next relaxation step is governed only by the average dislocation

velocity.

= =+ +
+

v
v

exp V kT( * ( * * )/ )p i j

p f j

i j

f j
i j f j

( , 1)

( , )

( , 1)

( , )
( , 1) ( , )

(A.10)

where the subscript ‘i’ and ‘f’ indicates the initiation ( =t 0) and end of relaxation. The subscript ‘j’ refers to the stress relaxation step. Rewriting the
above equation,

=+ exp V kT( * / )p i j

p f j
j

( , 1)

( , ) (A.11)

The strain rate ratio in the L.H.S of Eq. (A.11) when computed using model 1, reduces to

=
+ +

+ + +

+ t t1 1
p i j

p f j

j j

j

j j

j

( , 1)

( , )

1 1

1 (A.12a)

=
+

= =+
+

t(1 )
( assumed constant)j j

j
j j

1
1

(A.12b)

From Eq. (A.11), V* for model 1 is given by5

=
++V kT ln

t
*

(1 )

j

j j

j

1

(A.13)

Following the above procedure, V* for the proposed model can be derived as follows:
Substituting from Eq. (17) in the L.H.S of Eq. (A.11)

=
+

+

+

+

+ + + +

+

+
+ +

+

+

( )
( )

t a
t a

( )
( )

1 1

1 1

p i j

p f j

j

j

j j

j j

j
t a

a

j
t a

a

( , 1)

( , )

1 1 1

1

1

1
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j

j
j

j1
1

1

(A.14a)

=
+

+
++ + +a

t a
t a

a
( )
( )

1 1i j

j

j j

j j
j

j

j

, 1 1 1
1 j

(A.14b)

Simplifying and substituting in Eq. (A.11)

=
+

+
++ + +

V kT ln
a
t a

t a
a

*
( )
( )

1 1
j

j

j

j

j
j

j

j

1 1
1j

j

j1

(A.15)

A4.2. Method 2
Unlike method 1, if the constancy of ρm is not imposed, V* can be derived from a single relaxation step. This alternate procedure (Martin et al.,

2002) is referred as method-2 in the present work. For this method, the variation in ρm and σi within a single relaxation step need to be considered.
The strain rate ratio of jth relaxation step is given by

= =
v exp

G V
kT

v exp
G V

kT

exp V kT

* *

* *
( * / )p i j

p f j

i j

f j
j

( , )

( , )

0
0 ( , )

0
0 ( , )

(A.16)

Since ρm and σi vary within a relaxation step, unlike method-1, apparent activation volume =V V *a is used instead of V*. Dividing Eq. (A.11) by
Eq. (A.16) yields the ratio of strain rate at the beginning of two consecutive relaxations as

= =+ exp V kT
exp V kT

exp V kT
( * / )

( * / )
[( 1) * / ]p i j

p i j

j

j
j

( , 1)

( , ) (A.17)

A5. Data obtained by curve fitting repeated relaxation results- SS 316

5 The −ve sign in Eq. (24) is missing in the original references (Caillard and Martin, 2003; Martin et al., 2002).
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Table A2
Stress variation: Model parameters for RSR carried out at 600MPa (Engg. Stress) for hold time of 30 s.

Relaxation no. ¯ ¯ a λ

1 7.944 467.2 1.3769 0.258
2 8.466 54.24 0.2024 0.139
3 8.64 23.48 0.088 0.102
4 8.679 13.71 0.0545 0.073
5 8.707 10.04 0.0414 0.0612
6 8.748 7.827 0.03267 0.0505
7 8.69 7.358 0.0306 0.043
8 8.627 6.87 0.0285 0.0371
9 8.647 6.019 0.02514 0.0339
10 8.628 5.72 0.02386 0.0328

Table A3
Stress variation: Model parameters for RSR carried out at 630MPa (Engg. Stress)for hold time of 30 s.

Relaxation no. ¯ ¯ a λ

1 8.668 562.5 1.363 0.442
2 9.382 40.83 0.1587 0.197
3 9.73 15.34 0.06538 0.124
4 10.07 11.58 0.0528 0.095
5 10.32 8.41 0.03896 0.089
6 10.35 6.004 0.02924 0.068
7 10.32 5.367 0.02607 0.0586
8 10.39 4.774 0.02324 0.054
9 10.37 4.052 0.0201 0.0521
10 10.38 3.828 0.01886 0.0502

Table A4
Hold time variation: Model parameters for RSR carried out at 630MPa (Engg. Stress) for hold time of 10 s.

Relaxation no. ¯ ¯ a λ

1 8.891 608 1.5082 0.442
2 9.31 55.25 0.2326 0.242
3 9.83 29 0.1264 0.188
4 10.11 16.54 0.0751 0.145
5 10.35 8.924 0.04192 0.112
6 10.39 7.65 0.0356 0.102
7 10.44 6.719 0.03183 0.0924
8 10.48 5.835 0.0279 0.088
9 10.44 4.52 0.0216 0.0859
10 10.45 4.245 0.0203 0.0851

Table A1
Stress variation: Model parameters for RSR carried out at 550MPa (Engg. Stress) for hold time of 30 s.

Relaxation no. ¯ ¯ a λ

1 7.171 423.5 1.347 0.1126
2 7.391 80.07 0.273 0.0752
3 7.501 27.97 0.0968 0.06428
4 7.506 16.11 0.0569 0.05839
5 7.53 12.77 0.04612 0.04078
6 7.56 9.281 0.03435 0.0354
7 7.598 8.449 0.03116 0.02917
8 7.593 7.879 0.02916 0.0252
9 7.562 7.314 0.0271 0.0211
10 7.572 6.846 0.0254 0.0179
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9 10.26 2.451 0.01186 0.0564
10 10.25 2.356 0.01141 0.0548
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